Ackerstr. 11
40233 Düsseldorf
Telefon: +49 (0)211-54 23 36-10
Telefax: +49 (0)211-54 23 36-30
E-Mail: contact@brandseven.com
USt-Ident: DE301462116
Eingetragen im Handelsregister der Stadt Düsseldorf
HRB 68719
Geschäftsführer: Christine Gallus, Sven Jansen
© 2022 BRANDSEVEN GMBH
ACKERSTRASSE 11 · 40233 DÜSSELDORF · +49 (0)211 54 23 36 10
DATENSCHUTZ · IMPRESSUM
Das bedeutet unter anderem Kundenkommunikation, Aktivität, Zahlverhalten und vieles mehr. Jede Transaktion bzw. jedes Event beeinflusst die „Lebenserwartung“ eines Vertrages oder Kundenkontos.
Brandseven geht dabei individuell auf ihre Transaktionsdatenpakete ein und liefert einen Zeitstrahl pro Kunde, auf dem sich der Effekt jedes Events einfach ablesen lässt.
Die Methodik basiert auf einer Cox-Regression, also tatsächlich auf einem Algorithmus zur „Überlebensanalyse“. Events entsprechen „Hazards“, die sich positiv oder negativ auf die Kündigungswahrscheinlichkeit auswirken.
Selbstbewusste Entscheidungen können allerdings nur getroffen werden, wenn die Effekte aller Optionen abschätzbar sind.
Beispiel für ein Gedankenexperiment:
Intervention: Preisanpassung, Effekt: Kündigerquote verändert sich.
Ergebnis: Beste Preisanpassung für mögliche niedrige Kündigerquote.
Das Kausalmodell inkorporiert das Wissen, welche Variablen wie auf andere einwirken und kann so über die statistischen Zusammenhänge hinausschauen und den reinen Effekt einer Intervention erkennen. Dieses Wissen fließt aus zwei Quellen zusammen. Unserem langjährigen Expertenwissen im Energiemarkt und der Kundenanalyse, sowie aus der individuellen Kundendatengrundlage extrahierte Wechselwirkungen der Variablen.
Bisher beschäftigen wir uns mit probabilistischen Fragestellungen wie zum Beispiel:
Dafür schauen wir uns an, welche Merkmale haben die Kunden und welche Merkmale machen sie wahrscheinlich zu Kündigern (jene, die wir bei Kündigern sehen) und klassifizieren dann. Dafür kann man unterschiedliche Modelle nutzen. Bei uns ist das im Moment der Random Forest. Problematisch kann das Ganze aus mehreren Gründen sein. Einer davon ist, dass viele Merkmale miteinander korrelieren und es für das Modell schwieriger wird gute Informationen aus den Daten zu ziehen. Ein anderer ist, dass wir viele potentielle Variablen gar nicht beobachten können.
Das Kausal Modell inkorporiert „Expertenwissen“ über den Mechanismus hinter den Variablen. Also zum Beispiel:
Wetter und Churn korrelieren beim Medium Gas stark (warum nur?) – Wir wissen: Wetter beeinflusst Churn. Andererseits führen viele Kündiger nicht zu mehr Sonnenstunden (oder Regentagen).
Hier liegt also eine kausale „Richtung“ vor, die bisher nicht im Modell berücksichtigt wird. Dies ist natürlich ein triviales Beispiel. Das Kausale Modell soll sicherstellen, dass der Mechanismus hinter den Variablen berücksichtigt wird, unbeobachtete Effekte erkannt und herausgerechnet werden können und kann darüber hinaus Aussagen darüber treffen, wie eine Intervention auf einer oder mehrerer Variablen sich auswirkt. Auch hierzu ein Beispiel:
10% der Kunden sind Wechselgefährdet.
Intervention: Passe den Tarif (nach unten) an.
Frage: Sind nun weniger Kunden wechselgefährdet? Wie viele?
Somit liefert diese Methode auch die Plattform, Gedankenexperimente durchzuspielen und kann helfen, Kampagnen zu planen oder den Effekt einer Aktion abzuschätzen, bevor man sie durchführt. Der Gewinn ist also der Übergang von der ersten Frage zur zweiten:
Mit welcher Wahrscheinlicht passiert X, wenn ich Y sehe? Mit welcher Wahrscheinlicht passiert X, wenn ich Y mache?